)
4
°
-
0
-
14
-
0
g
L
14
<
3
-
L
0
)

Now enter the contents of the Label, Mnemonic, and
Remark columns. Because our Editor is in BASIC, your
text input will be slower than with a full-blown word
processor. The Label column is empty in line 001 of our
sample program, so press the proper key or key com-
bination (see your Control Capsule) to tab into the
Mnemonic field. (We will explain labels below.) Now type
in the first instruction: LDA# 3. You must enter the text
exactly as it appears in the listing, or the NanoAssembler
program will not interpret the code properly. Make sure
there is no space between the A and the #. You must,
however, place a space between the # and the 3.

This spacing is critical because the Mnemonic field
actually consists of two sub-fields; and the space acts
as a separator for these sub-fields. The left sub-field is
the “‘op-code,” or instruction field, which defines the
actual instruction. In line 001, the op-code is LDA#. The
right field contains the “‘operand.” The operand is either
a two-nibble address or a single-nibble quantity to be
loaded or stored in a register or memory location. It
defines the number that the op-code is to operate on.
In line 001, the number 3 (%0011) is the operand.

After you have entered the first instruction, you may
tab into the Remark field. On a program as short as this
one, however, you may choose to save time by omit-
ting the remarks. Continue entering lines 002, 003, and
004 in a similar fashion.

Once you've entered part or all of the program into
memory using the Add command, you can use the other
editing commands. Each of these commands prompts
you for a particular line number. E lets you Edit an
already-existing line in memory. D allows you to Delete
aline, and I lets you Insert a line. The L command lets
you List up to 10 lines of a program to inspect what is
in memory. If the program extends more than 10 lines
beyond the beginning line number that you specify, you
have the option to either continue listing more lines or
quit and return to the command line.

Labels As Labor Savers

In line 005 (HERE JMP HERE), you encounter an impor-
tant assembly-language tool—the ‘label.” In the
NanoAssembler, we define a label as a group of up to
6 alpha-numeric characters, beginning with a letter—
in our example, the word HERE. Assembler programs use
labels in place of numeric quantities. In this case, HERE
represents the address to be JuMPed

to. One major advantage of labels is BoIN} {00 TR T % CONTROL CAPSULE
that you do not have to know the ac-
tual numeric addresses used in a pro-
gram. Instead, the assembler uses the NanokEditor NanoEditor
labels to assign the correct address to KEY FUNCTION KEY FUNCTION
a particular instruction for you. = Escps Esc Escape
Before continuing, let’s clear up an Ednlatlxm(os::cs fack E"[';ES"E‘;‘E“’ Back

_ ackspace ackspace

iret:,a ;?i:;g&gﬁ:ﬁ%ﬁ?gs? ?I'Ba egcﬁ} CONTROL D Erase line SHIFT DELETE  Erase line
: - TAB Tab. TAB Tab

ference between line numbers of a - cﬂrm left CONTROL - c:rsor left
source file and addresses of an object - Cursor right CONTROL — Cursor right
file. Each line in a source file contains RETHAN EritarLine RETURN Enter Line

assemble the source file into object code, the op-code
may require as many as three addresses (see Figure 1
for the number of nibbles each instruction requires).
Thus, a source file’s line numbers and the actual ad-
dresses of the object code almost always differ. When
the Assembler prints out its listing, the addresses and
codes are located on the line just below the source code,
representing the order of events during assembly.

By inspecting the two left-hand columns of Sample
Program 1, you can see that the address to be JuMPed
to is 6. You know this only because we have already
assembled (or translated) the source code on the right
into the object code on the left. If we hadn’t provided
the machine code, however, you would have to assem-
ble all of the instructions to discover what address you
wanted to JuMP to. The use of labels saves you from this
tedious task and is one of the primary advantages of
assemblers.

When you finish entering line 005 and press [RETURN]
or [ENTER], a prompt tells you to enter line 6. This pro-
gram has no line 006, so press the [ESCAPE] key for your
machine (see your Control Capsule), and the program
returns you to the command line. Now you can use the
List command to see if you have entered everything cor-
rectly. If you find any errors, you can Edit the line or
lines that they occur in. If you change aline, then decide
that you don’t want those changes, you can press the
[ESCAPE] key instead of [RETURN] or [ENTER] to revert back
to the original version of the line. This option is also
available if you select Insert, but change your mind
before finally entering the line.

From Editor To Assembler

After you are sure that you've correctly entered the
program, save it to disk (or tape on Atari, C-64, or TI).
To save yourfile, select option (2) Files. Then select the
appropriate menu options, and enter the file name. If
your operating system does not normally support ex-
tensions to file names (all but Atari and IBM), the name
must be at least two characters shorter than a normal
legal file name. The program will automatically append
a .S (_S on the TI), for Source, so that you can use the
same name for both source and object files without any
confusion. If you have a printer, you may also wish to
get a hardcopy of your program. This is helpful when
you are tracking down errors during assembly. To use

CONTROL CAPSULE ~ CONTROL CAPSULE % oy CONTROL CAPSULE
NanoEditor NanoEditor NanoEdtior
KEY FUNCTION KEY FUNCTION KEY FUNCTION
F1 Escape ESCAPE Escape FTCN 9 Escape
Edit Mode: Edit Mode: Edit Mode:
DEL Backspace BACKSPACE Backspace FCTN 1 Delete
F3 Erase line DELETE Delete character FCTN 3 Erase line
F5 Tab TAB Tab FCTN 7 Tab.
CRSR ~ Cursor left - Cursor left. FCTN S Cursor left
CRSR - Cursor right - Cursor right FCTND Cursor right
RETURN Enter line ENTER Enter line ENTER Enter line

26 © Home Computer Magazine 1985 Volume 5, No. 6




